
Chapter 5: Solving General Linear Programs 

So far we have concentrated on linear programs that are in standard form, which have a 
maximization objective, all constraints of ≤ type, all of the right hand side constants are 
greater than or equal to zero, and all of the variables are restricted to nonnegative values.  
As we saw in Chapter 2 (see Figure 2.5), a standard form LP has one big advantage: the 
origin [the point at (0,0,0,…)] is always a feasible cornerpoint, so the simplex method can 
always start there.  The simplex method then happily proceeds from cornerpoint to better 
cornerpoint until it recognizes optimality.  But the simplex method is in trouble if it can’t 
find that initial cornerpoint to start at. 

All forms of LPs arise in practice, not just standard form LPs.  You may have 
minimization objectives, constraints of the ≥ or = type, variables which can take negative 
values, and right hand side constants which are negative.  How can we deal with these 
forms?  That is the subject of this chapter. 

Minimization 

There are two simple ways to deal with a minimization objective function.  The easiest 
and most popular method is to simply multiply the minimization objective function by -1, 
and then to maximize the resulting function.  For example, suppose your objective 
function is: 

minimize Z = 12x1 + 5x2 – 7x3 

then convert to a maximization: 

maximize (–Z) = –12x1 – 5x2 + 7x3 

As a reminder that the original objective function was a minimization, put a –1 in the Z 
column of the simplex tableau.  After solving the linear program, recover the solution as 
follows: 

• multiply the optimum objective function value by –1 to recover the minimum 
value of the original minimization objective function. 

• the values of the variables as taken from the tableau will be correct. 

The second and less popular alternative to dealing with minimization objectives is to 
keep the minimization objective function in place, unaltered, but to change the rules of 
tableau manipulation, as follows: 

• new test for optimality: are all of the coefficients in the objective function row 
nonpositive? If yes, then stop iterating: you’ve reached the optimal solution. 

• new choice for entering basic variable: choose the most positive coefficient in the 
objective function row. 
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For most students, it is easiest to use the first option because the rules of tableau 
manipulation remain unchanged.  This is the method that we will assume from now on. 

Equality Constraints 

Suppose that the Acme Bicycle Company problem included an equality constraint, as 
below: 

maximize Z = 15x1 + 10x2 
subject to: x1 ≤ 2 
  x2 ≤ 3 
  x1 + x2 = 4  ← note change to equality constraint! 

As you can see in Figure 5.1, the 
origin is no longer a feasible 
cornerpoint at which to start the 
simplex method.  There doesn’t 
seem to be any easy way to find an 
initial basic feasible solution.  How 
do we get the simplex method 
started? 
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If a1 were a slack variable, we would be able to use the origin as the initial feasible 
cornerpoint to get started, giving an initial basic feasible solution of (x1,x2,s1,s2,a1) = 
(0,0,2,3,4).  But here’s the difficulty: a1 cannot be nonzero in the final solution, or the 
original 3rd constraint is violated!  Somehow we need to force a1 to zero to make sure that 
the 3rd constraint is satisfied. 

The Phase 1 LP 

The solution to this dilemma is to solve two LPs.  This is where the phase 1 that we have 
ignored until now finally comes in.  The sole purpose of the phase 1 LP is to obtain a 
basic feasible solution for the original problem, as follows: 

• Phase 1: solve an LP whose objective is to minimize the value of any artificial 
variables in the model, in this case a1.  If you can drive all of the artificial 
variables to zero, then you will be at a feasible cornerpoint of the original 
problem. 

• Phase 2: starting at the feasible cornerpoint found during phase 1, switch over to 
the original objective function and continue iterating until the optimum point is 
found. 

The phase 1 objective function is simply to minimize the sum of the artificial variables.  
In general this is expressed as: 

minimize W = a1 + a2 + a3 + … 

You can think of W as the sum of the constraint violations because each artificial 
variable, in a manner similar to slack variables, takes up the slack between the constraint 
left hand side and the right hand side.  But the left hand side should be equal to the right 
hand side in an equality constraint, so the artificial variable shows the amount by which 
the constraint is violated. Because we are minimizing W, after we multiply by –1 and 
move the variables to the left hand side, the phase 1 objective function looks like this: 

maximize –W + a1 + a2 + a3 + … = 0 

In setting up the tableau, the original (or phase 2) objective function is also retained.  We 
use the phase 1 objective during phase 1, but also update the phase 2 objective at the 
same time so that it is ready to go when phase 1 ends.  On the other hand, after phase 1 
ends successfully we ignore the phase 1 objective function and the artificial variables 
thereafter because they are no longer useful. 

Here is one important thing to remember: the first phase 1 tableau is never in proper 
form.  This is because the artificial variables will be the initial basic variables for the 
constraints they appear in, and yet they will appear twice in the column: once in their 
constraint row, and once in the objective function row.  They should appear only once, 
with a +1 coefficient, in their constraint row.  Hence some initial work is required to put 
the tableau into proper form so that the iterations can start. 
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Let’s go through the iterations for the version of the Acme Bicycle Company problem in 
which the third constraint is an equality.  The initial tableau is as follows: 

basic 
variable 

eqn. 
no. 

W Z x1 x2 s1 s2 a1 RHS MRT 

W ph1 -1 0 0 0 0 0 1 0 never 
Z ph2 0 1 -15 -10 0 0 0 0 never 
s1 1 0 0 1 0 1 0 0 2  
s2 2 0 0 0 1 0 1 0 3  
a1 3 0 0 1 1 0 0 1 4  

 

As you can see, this tableau has two objective functions: W for phase 1, which seeks to 
minimize the sum of the artificial variables (only a1 in this case), and Z for phase 2, the 
original objective.  Looking at the a1 column, you can see that this tableau is not in 
proper form: we need to eliminate the coefficient in the phase 1 (W) objective function 
row.  To do this, subtract each row containing an artificial variable from the phase 1 
objective function row.  In the tableau above, subtract equation 3 from equation ph1.  The 
tableau in proper form is shown below. 

basic 
variable 

eqn. 
no. 

W Z x1 x2 s1 s2 a1 RHS MRT 

W ph1 -1 0 -1 -1 0 0 0 -4 never 
Z ph2 0 1 -15 -10 0 0 0 0 never 
s1 1 0 0 1 0 1 0 0 2  
s2 2 0 0 0 1 0 1 0 3  
a1 3 0 0 1 1 0 0 1 4  

 

Notice that the RHS for the phase 1 objective function now reads “-4”.  But don’t forget 
that we multiplied the original phase 1 minimization objective function by –1 so that we 
could operate on it as a maximization objective function: the –1 in the W column reminds 
us of this.  So the true value of W at this point is 4, meaning there are 4 units of constraint 
violation.  The goal of phase 1 is to reduce the sum of the constraint violations to zero. 
During phase 1, we are using the phase 1 objective function, and as the tableau above 
shows, both x1 and x2 are tied for the entering basic variable with objective function 
coefficients of –1.  Let us arbitrarily choose x2 as the entering basic variable.  The 
calculations are shown below. 

basic 
variable 

eqn. 
no. 

W Z x1 x2 s1 s2 a1 RHS MRT 

W ph1 -1 0 -1 -1 0 0 0 -4 never 
Z ph2 0 1 -15 -10 0 0 0 0 never 
s1 1 0 0 1 0 1 0 0 2 no limit 
s2 2 0 0 0 1 0 1 0 3 3/1=3 
a1 3 0 0 1 1 0 0 1 4 4/1=4 
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basic 
variable 

eqn. 
no. 

W Z x1 x2 s1 s2 a1 RHS MRT 

W ph1 -1 0 -1 0 0 1 0 -1 never 
Z ph2 0 1 -15 0 0 10 0 30 never 
s1 1 0 0 1 0 1 0 0 2 2/1=2 
x2 2 0 0 0 1 0 1 0 3 no limit 
a1 3 0 0 1 0 0 -1 1 1 1/1=1 

The phase 1 objective function value, the sum of the constraint violations, has been 
reduced to 1 in the tableau above.  Phase 1 is not yet complete though: there is still a 
negative coefficient in the phase 1 objective function row.  Note that the phase 2 
objective has also been updated to reflect its value at this new (infeasible) cornerpoint.   

basic 
variable 

eqn. 
no. 

W Z x1 x2 s1 s2 a1 RHS MRT 

W ph1 -1 0 0 0 0 0 1 0 never 
Z ph2 0 1 0 0 0 -5 15 45 never 
s1 1 0 0 0 0 1 1 -1 1  
x2 2 0 0 0 1 0 1 0 3  
x1 3 0 0 1 0 0 -1 1 1  

The tableau above has at last managed to force the phase 1 objective function to zero.  
Phase 1 is now complete: no constraints are violated, and we are at a feasible cornerpoint 
for the original problem.  Now it is time to discard the phase 1 objective function, the W 
column, and all of the artificial variables (just a1 in this case), which results in the tableau 
below.  Note that the phase 2 objective function, which has been carried through all of the 
calculations so far, is updated, in proper form, and ready to go.  And because there is a 
negative coefficient in the phase 2 objective function row, the iterations must continue. 

basic 
variable 

eqn. 
no. 

Z x1 x2 s1 s2 RHS MRT 

Z ph2 1 0 0 0 -5 45 never 
s1 1 0 0 0 1 1 1 1/1=1 
x2 2 0 0 1 0 1 3 3/1=3 
x1 3 0 1 0 0 -1 1 no limit 

 

basic 
variable 

eqn. 
no. 

Z x1 x2 s1 s2 RHS MRT 

Z ph2 1 0 0 5 0 50 never 
s2 1 0 0 0 1 1 1  
x2 2 0 0 1 -1 0 2  
x1 3 0 1 0 1 0 2  

After this final phase 2 iteration, the solution is complete: there are no negative 
coefficients remaining in the phase 2 objective function.  The final solution is (x1,x2,s1,s2) 
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= (2,2,0,1) with Z = 50.  As before, Acme should produce mountain bikes at the rate of 2 
per day and racers at the rate of 2 per day to achieve a profit rate of $50 per day. 

Because of the added dimensions due to the slack and the artificial variables, it is not 
strictly possible to draw a picture illustrating what happens during a two-phase solution.  
But we can project what is happening onto a 2-dimensional, x1-x2 plane, as in Figure 5.2.  
The figure shows that the phase 1 solution still starts at the origin, which is feasible as far 
as the phase 1 formulation is concerned, because of the added artificial variable, but 
which is infeasible for the phase 2 formulation.  The phase 1 procedure moves through 
other cornerpoints that are phase-1-feasible but phase-2-infeasible until it reaches a 
cornerpoint that is feasible for both phase 1 and phase 2.  It is at this point that the phase 
1 formulation is discarded in favor of the phase 2 formulation.  The phase 2 solution then 
iterates from there to problem optimality. 
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are nonnegative), and yet W is still positive, then not all of the constraint violations have 
been eliminated.  This means that the LP is infeasible.  One or more of the artificial 
variables could not be forced to zero, and for feasibility, all of the artificial variables 
must be forced to zero. 

The solution procedure terminates at this point without going on to the phase 2 solution.  
Now you need to analyze your linear program to determine why it is infeasible.  It may be 
that you have correctly expressed the constraints, so there really is no solution to the 
problem.  But it’s much more likely that you have made an error in writing the 
constraints, such as expressing a ≤ constraint as a ≥ constraint, or added a superfluous, 
contradicting constraint. 

Fortunately, there are tools that can assist in your analysis.  Most modern commercial 
solvers incorporate special routines to find an Irreducible Infeasible Set (IIS) of 
constraints.  An IIS is usually a very small subset of the constraints in the model and has 
a special property: the IIS is infeasible, but taking away one or more of the constraints in 
the IIS makes it feasible.  This means that every member of the IIS contributes directly to 
the infeasibility.  Instead of laboriously working through the thousands of constraints in a 
model, an IIS brings the problematic constraints directly to the modeler’s attention.  
Human insight is then needed to determine which of the constraints in the IIS to correct. 

Most of the routines for finding IISs and analyzing infeasible linear programs in general 
were developed by, ahem, your humble author.  I would very much enjoy going into great 
detail on this fascinating topic, but alas, time and space are limited in this introductory 
exposition… 

The Big-M Method 

The Big-M method is an alternative to the two-phase method that we have described 
above.  It is presented in many textbooks, but is not used in commercial solvers because it 
causes numerical problems in the computer calculations.  The main idea in the Big-M 
method is to combine the phase 1 and phase 2 objective functions into a single objective 
function.  This is done by writing the original objective function, and then adding the 
artificial variables to it.  Each artificial variable appears in the objective function with a 
large penalty coefficient: this is the “Big-M”, which stands for “big multiplier”.  For 
example, the Big-M version of the objective function for the problem solved above is: 

maximize Z = 15x1 + 10x2 – Ma1 

As you can see, if M is a large positive number then a straightforward solution of the 
problem will drive a1 to zero because it has such a reducing effect on Z, which simplex is 
trying to maximize.  When a1 is zero, the solution will be feasible for the original 
problem. 
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Greater-than-or-Equal Constraints 

Constraints of the ≥ type with a positive right hand side constant are not allowed in a 
standard form LP, again because such constraints eliminate the origin as a feasible 
cornerpoint, similar to the way in which equality constraints eliminate the origin.  You 
can’t simply multiply through by –1 because this then gives a negative right hand side.  
The problem with negative right hand sides is that they imply a negative value for a basic 
variable in the tableau, which is not possible if the variables are restricted to 
nonnegativity. 

The solution to this problem is to convert the ≥ constraint to an equality constraint by 
including a surplus variable.  A surplus variable is exactly the same as a slack variable, 
except that it expresses the surplus of the left hand side over the right hand side of the 
constraint.  For example: 

3x1 + 5x2 ≥ 20  ⇒  3x1 + 5x2 − s1 = 20. 

A surplus variable cannot be used as the basic variable for the constraint it appears in 
because its coefficient is –1, and we need +1 for the coefficients of basic variables.  On 
the other hand, the constraint is now an equality, so we can treat it exactly as we treat any 
other equality constraint: add an artificial variable and use a phase 1 procedure!  In the 
end, our example constraint would look like this: 

3x1 + 5x2 − s1 + a1 = 20 

So there will be two variables added to every ≥ constraint: one surplus variable (with a 
coefficient of –1) and one artificial variable (with a coefficient of +1).  Any artificial 
variables added to ≥ constraints will be driven to zero during phase 1. 

Negative Right Hand Side 

As described above, a negative right hand side constant presents a problem because it 
implies that the basic variable for the constraint must take on a negative value, which is 
not possible for nonnegative variables.  The solution to this problem is simple: just 
multiply by –1 to make the right hand side positive, and then treat the resulting ≤, ≥, or = 
as appropriate. 

How Many Variables? 

The reformulation of the problem for solution via the simplex method does add a number 
of variables.  Let’s suppose we have a problem which has n original variables, l less-than-
or-equal constraints, g greater-than-or-equal constraints, and e equality constraints.  The 
reformulated model will then have: 

• n original variables, 
• l slack variables, 
• g surplus variables, and 
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• g + e artificial variables. 
All of the g + e artificial variables will be eliminated at once during the same phase 1 
procedure using a phase 1 objective of minimizing W = ∑(artificial variables). 

The speed of the simplex solution depends mostly on the number of constraints in the 
model, not the number of variables, so the blow-up in the number of variables is not 
important.  Solution speed depends on the number of constraints because these define the 
cornerpoints, and it is the number of cornerpoints that must be traversed that determines 
how long the solution takes. 

An Example Conversion 

Here is another non-standard-form linear program that is vaguely related to the Acme 
Bicycle Company problem: 

 minimize  Z = 15x1 + 10x2   ← minimization instead of maximization 
   x1 ≤ 2 
   x2 = 3   ← equality instead of ≤ 
   x1 + x2 ≥ 4  ← ≥ instead of ≤ 

When converted for solution in the simplex tableau, this becomes: 

 maximize (-W) + a1 + a2 = 0  phase 1 objective function 
 maximize (-Z) + 15x1 + 10x2 =0  phase 2 objective function 
   x1 + s1 = 2 
   x2 + a1  = 3 
   x1 + x2 – s2 + a2 = 4    

The initial basic variables will be s1 for the first constraint, a1 for the second constraint, 
and a2 for the third constraint.  These equations can be transported directly to the tableau, 
which must then be put into proper form (it will not be in proper form because the two 
artificial variables, both basic, will appear in the phase 1 objective function row as well 
as in their respective constraints). 

Variables that can be Negative 

In some problems, the most natural formulation of the problem allows some variables to 
possibly take on negative values.  For example, the variable might express the difference 
between the production level now and the production level in the last fiscal quarter, so it 
will take on a negative value if the production level falls.  There are two cases to 
consider, as described below. 
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There is a Lower Bound on the Negative Value 

You may know, for example, that the production level cannot drop more than 25 units 
from its present value, that is that x1 ≥ -25, or in general that xj ≥ Lj, where Lj is a negative 
number.  In this case we can use a change of variables: xj = xj′ + Lj.  Now we replace xj by 
xj′ + Lj everywhere in the problem and solve the resulting LP for the value of xj′.  
Afterwards, the value of xj is recovered from the variable relationship: xj = xj′ + Lj. 

For example, consider the following linear program in which one of the variables can be 
negative: 

Z = 15x1 – 5x2  Z = 15(x1′-25) – 5x2  Z = 15 x1′ – 5x2 – 375 
2x1 ≤ 10  2(x1′-25) ≤ 10  2x1′ ≤ 60 
4x2 ≤ 25 ⇒ 4x2 ≤ 25 ⇒ 4x2 ≤ 25 

3x1 – 2x2 ≤ 8  3(x1′-25) – 2x2 ≤ 8  3x1′ – 2x2 ≤ 83 
x1 ≥ -25  (x1′-25) ≥ -25  x1′ ≥ 0 
x2 ≥ 0  x2 ≥ 0  x2 ≥ 0 

As you can see, the final converted form of the problem is an ordinary linear program 
with nonnegative variables that we already know how to solve!  After solving, the value 
of x1 is found from the original change of variables relationship: x1 = x1′–25.  By the way, 
the constant in the converted objective function is easy to handle: it just appears on the 
right hand side in the initial tableau and is carried along.  The final value of Z is given 
correctly in the final tableau and is not affected by the change of variables. 

Unrestricted Variables 

Variables can also take on negative values when they are totally unrestricted; when their 
value may be anything between minus infinity and plus infinity.  Unrestricted variables 
must be handled in a different way: each unrestricted variable xj is replaced by the 
difference of two new nonnegative variables: xj = xj

+ – xj
-.  Even though xj

+ and xj
- are 

nonnegative, xj can take on any value between minus and plus infinity by choosing 
appropriate values for xj

+ and xj
-. 

As it happens, the simplex method will automatically set one or the other of xj
+ or xj

- to 
zero, or it will set both to zero, but it will never happen that both are positive 
simultaneously.  Why is this?  Notice that when you make the change of variables, 
replacing xj by xj

+ – xj
-, you get two tableau columns that are identical, except that one is 

the negative of the other.  This property is maintained throughout the solution.  Recall 
that when a tableau is in proper form, the basic variable has a +1 coefficient, and the rest 
of the column is filled with zeros.  If the xj

+ and xj
- columns are negative copies of each 

other, then it is not possible for both to be basic at the same time: the +1 entry in one 
column should be mirrored by a –1 entry in the other column, and this is not possible 
when the tableau is in proper form. 
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This means that reading the value of xj after the revised problem is solved is 
straightforward: 

• if xj
+ > 0 then xj =  xj

+, 
• if xj

- > 0 then xj = - xj
-, 

• if xj
+ = xj

- = 0 then xj = 0. 

You might think that if all of the variables in the problem are unrestricted, then there 
must be twice as many variables in the revised problem, but this is not so.  In this case we 
just use the same xj

- in all of the change of variable expressions.  Upon solution, xj
- is the 

absolute value of the most negative variable.  The various xj
+ then express the amount by 

which each xj exceeds that most negative value in a manner similar to the case of lower-
bounded negative variables. 

In Practice 

In practice, you don’t have to worry about any of the details of converting a linear 
program into a form that can be solved by the simplex method.  The solver software 
carries out any necessary conversions automatically.  Your responsibility is making sure 
that the mathematical model correctly represents reality, or more accurately, makes a 
relevant approximation of reality! 

Some of the conversions mentioned in this chapter are not in fact needed at all in some 
LP solvers.  For example, many solvers implicitly assume that all variables (and row 
constraints) are upper and lower bounded.  Whether the bounds are positive or negative 
does not matter: all bounds are handled in a similar manner. 
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